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Motivation	

• GPUs have democratized HPC. 	

•  Great FLOP/$, massively parallel chip on a commodity PC….	


• However, this is not for free. 	

•  New programming model.	

•  New challenges. 	

	


• Algorithms need to be re-implemented and rethought. 	


• Bio-inspired computations are challenging applications for GPUs.	

•  They are intrinsically parallel by its definition. 	

•  They were optimized for sequential platforms.	
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Graphics Processing Units (GPUs)	

•  More silicon for processing.	

•  Throughput-oriented 

architecture.	

•  High Memory Bandwidth. 	

•  Great Floating-Point 

Performance (up to 1 
TeraFLOP).	


•  SP, SMs, Shared Memory, 
Device Memory…….	


•  But, different Programming 
approach (CUDA).	
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Graphics Processing Units (GPUs)	

•  Host = CPU.	

•  Device = GPU. 	

•  Thread = basic execution unit = SP. 	

•  Block = batch of threads = sharing the SM	

•  Grid = batch of blocks = MIMD	

•  Warp = Scheduling unit = SIMD 	
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CUDA Generations	
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Ant Colony Optimization for TSP 	

• The Travelling Salesman Problem (TSP):	


•  Finding the shortest (or “cheapest”) round-trip route 	

that visits each of a number of “cities" exactly once.	

•  The TSP is a well-known NP-hard optimization problem.	

•  Complete weighted graph, di,j=dj,i;	


•  The first problem solved by ACO.	


•   The Ant Colony Optimization (ACO):	

•  Uses  simulated “Ants” (or agents).	

•  Each ant moves through the graph until it completes a tour.	

•  Then, offers this tour as its suggested solution, dropping “pheromone”.	

•  The amount of pheromone depends on the tour’s quality.	

•  Ant’s movement are driven by heuristic and pheromone information.	

•  Finally, evaporation to avoid stalling in a local minimum.   	
	


JGPU 2011- José M. Cecilia	
 10	




Ant System for the TSP	

• The Ant System (AS) is an early variant of ACO.	


•  Proposed by Dorigo.	


• Divided into two main stages. 	

•  Tour Construction and Pheromone Update.	


• Tour Construction:	

•  m ants building tours in parallel.	

•  Initially ants are randomly placed. 	

•  Then they apply random proportinal rule.	

•  Each ant mantains a memory (tabu list).	

•  The cities are selected randomly (roulette wheel)	

•  Some techniques: NN-List, Choice Info matrix…	
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representing the inter-city distance di,j = dj,i between cities

i and j. The TSP is a well-known NP-hard optimisation

problem, and is used as a standard benchmark for many

heuristic algorithms [15].

The TSP was the first problem solved by Ant Colony

Optimisation (ACO) [6], [16]. This method uses a number

of simulated “ants” (or agents), which perform distributed

search on a graph. Each ant moves through on the graph until

it completes a tour, and then offers this tour as its suggested

solution. In order to do this, each ant may drop “pheromone”

on the edges contained in its proposed solution. The amount

of pheromone dropped, if any, is determined by the quality
of the ant’s solution relative to those obtained by the other

ants. The ants probabilistically choose the next city to

visit, based on heuristic information obtained from inter-

city distances and the net pheromone trail. Although such

heuristic information drives the ants towards an optimal

solution, a process of “evaporation” is also applied in order

to prevent the process stalling in a local minimum.

The Ant System (AS) is an early variant of ACO, first

proposed by Dorigo [16]. The AS algorithm is divided

into two main stages: Tour construction and Pheromone
update. Tour construction is based on m ants building tours

in parallel. Initially, ants are randomly placed. At each

construction step, each ant applies a probabilistic action

choice rule, called the random proportional rule, in order

to decide which city to visit next. The probability for ant k,

placed at city i, of visiting city j is given by the equation 1

pki,j =
[τi,j ]

α [ηi,j ]
β

�
l∈Nk

i
[τi,l]

α [ηi,l]
β
, if j ∈ Nk

i , (1)

where ηi,j = 1/di,j is a heuristic value that is available

a priori, α and β are two parameters which determine the

relative influences of the pheromone trail and the heuristic

information respectively, and Nk
i is the feasible neighbour-

hood of ant k when at city i. This latter set represents the

set of cities that ant k has not yet visited; the probability

of choosing a city outside Nk
i is zero (this prevents an ant

returning to a city, which is not allowed in the TSP). By

this probabilistic rule, the probability of choosing a partic-

ular edge (i, j) increases with the value of the associated

pheromone trail τi,j and of the heuristic information value

ηi,j . Furthermore, each ant k maintains a memory, Mk
,

called the tabu list, which contains the cities already visited,

in the order they were visited. This memory is used to define

the feasible neighbourhood, and also allows an ant to both

to compute the length of the tour T k
it generated, and to

retrace the path to deposit pheromone.

Another approach to tour construction is described in [1].

This is based on exploiting the nearest-neighbour informa-

tion of each city by creating a Nearest-Neighbour list of

length nn (between 15 and 40). In this case, an ant located

in a city i chooses the next city in a probabilistic manner

among the nn best neighbours. Once the ant has already

visited all nn cities, it selects the best neighbour according

to the heuristic value given by the equation 1.

After all ants have constructed their tours, the pheromone

trails are updated. This is achieved by first lowering the

pheromone value on all edges by a constant factor, and then

adding pheromone on edges that ants have crossed in their

tours. Pheromone evaporation is implemented by

τi,j ← (1− ρ)τi,j , ∀(i, j) ∈ L, (2)

where 0 < ρ ≤ 1 is the pheromone evaporation rate.

After evaporation, all ants deposit pheromone on their visited

edges:

τi,j ← τi,j +
m�

k=1

∆τki,j , ∀(i, j) ∈ L, (3)

where ∆τij is the amount of pheromone ant k deposits.

This is defined as follows:

∆τki,j =

�
1/Ck

if e(i, j)k belongs to T k

0 otherwise
(4)

where Ck
, the length of the tour T k

built by the k-th

ant, is computed as the sum of the lengths of the edges

belonging to T k
. According to equation 4, the better an

ant’s tour, the more pheromone the edges belonging to this

tour receive. In general, edges that are used by many ants

(and which are part of short tours), receive more pheromone,

and are therefore more likely to be chosen by ants in future

iterations of the algorithm.

III. RELATED WORK

Stüzle [8] describes the simplest case of ACO paral-

lelisation, in which independently instances of the ACO

algorithm are run on different processors. Parallel runs

have no communication overhead, and the final solution is

taken as the best-solution over all independent executions.

Improvements over non-communicating parallel runs may

be obtained by exchange information among processors.

Michel and Middendorf [17] present a solution based on this

principle, whereby separate colonies exchange pheromone

information. In more recent work, Chen et al. [18] divide

the ant population into equally-sized sub-colonies, each

assigned to a different processor. Each sub-colony searches

for an optimal local solution, and information is exchanged

between processors periodically. Lin et al. [10] propose

dividing up the problem into subcomponents, with each

subgraph assigned to a different processing unit. To explore

a graph and find a complete solution, an ant moves from one

processing unit to another, and messages are sent to update

pheromone levels. The authors demonstrate that this ap-

proach reduces local complexity and memory requirements,

thus improving overall efficiency.



Ant System for the TSP (II)	

•  Pheromone Update:	


•  After tour construction.	

•  First, lowering pheromone in all edges by a constant.	

•  Adding pheromone on the tour´s edges. 	
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subgraph assigned to a different processing unit. To explore
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Parallelization Strategies for ACO on GPUs. 	


•   Two main stages of the ACO algorithm, represented by two 
different kernels (global synchronization):	


•  Tour construction	


•  Pheromone Update	
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Tour construction kernel.	


•  Up to now, main strategy an ant = thread. 	


Advantages: 	


•  It is the natural parallelism of ACO (”m ants building tours in parallel.”)	


Disadvantages: 	


•  Threads represent ant´s task. 	


•  Threads are independent of each other (Warp divergences).	


•  Threads need many resources (low occupancy resources).	


•  Low-level of parallelism for the GPU. (800 ants = 800 cities) 	
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Increasing the parallelism.	


	


	


	


•  Now, a thread per each city. 	


•  A block for each ant. 	
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Pheromone update kernel.	


•  Threads per city on the ant´s tour.	


•  More than one ant may visit the same 
city. 	


•  Atomic instructions are needed.	


•  Problem: Atomic operations are 
costly.	
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Alternative design: Scatter to Gather transformation+Tilling	


•  Old generation of GPUs was possible 
Gather but not Scatter.	


•  Gather: read from different memory 
address but writes in the same memory 
location. 	


•  Scatter: Read from different memory 
location and writes into different memory 
address.	


•  With CUDA, it is possible but…	


•  High preassure on device memory, then 
tiling and thread reduction  	
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Experimental setup	


•  TSPLIB Benchmark.	

•  Main ACO parameters:	
	

	
α,β, m=n	


•  CPU code by provided by Stüzle. 	

•  Results in simple-precision and per 

iteration, averaged 100 iterations.	

•  Two GPUs: 	

    Tesla C1060 and Tesla M2050	
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accesses to device memory.
A tiling technique is proposed for increasing the appli-

cation bandwidth. Now, all threads cooperate to load data
from global memory to shared memory, but they still access
edges in the ant’s tour. Each thread accesses global memory
2n2/θ, θ being the tile size. The rest of the accesses are
performed on shared memory. Therefore, the total number
of global memory accesses is γ = 2n4/θ. The relation
loads/atomics is lower γ : c, but maintains the orders of
magnitude.

We note that an ant’s tour length (i.e. n+1) may be bigger
than the maximum number of threads that each thread block
can support (i.e. 512 threads/block for Tesla C1060). Our
algorithm prevents this situation by setting our empirically
demonstrated optimum thread block layout, and dividing the
tour into tiles of this length. This raises up another issue;
this is when n + 1 is not divisible by the θ. We solve this
by applying padding in the ants tour array to avoid warp
divergence (see Figure 3).

Unnecessary loads to device memory can be avoided by
taking advantage of the problem’s nature. We focus on the
symmetric version of the TSP, so the number of threads
can be reduced in half, thus halving the number of device
memory accesses. This so-called Reduction version actually
reduces the overall number of accesses to either shared
or device memory by having half the number of threads
compared to the previous version. This is combined also with
tiling, as previously explained. The number of accesses per
thread remains the same, giving a total of device memory
access of ρ = n4/θ.

V. EXPERIMENTAL RESULTS

We test our designs using a set of benchmark instances
from the well-known TSPLIB library [22] ACO parameters
such as the number of ants m, α, β, and so on are set
according with the values recommended in [1]. The most
important parameter for the scope of this study is the number
of ants, which is set m = n (i.e., the number of cities).

We compare our implementations with the sequential
code, written in ANSI C, provided by Stüzle in [1]. The
performance figures are recorded for a single iteration, and
averaged over 100 iterations. In this work we focus on the
computational characteristics of the AS system and how it
can be efficiently implemented on the GPU. The quality of
the actual solutions obtained is not deeply studied, although
the results are similar to those obtained by the sequential
code for all our implementations.

A. Performance evaluation
The two main stages, Tour construction and Pheromone

update, are deeply evaluated on two different GPU systems,
both based on the Nvidia Tesla. We use a C1060 model
manufactured in mid 2008, and delivered as a graphics card
plugged into a PCI-express 2 socket, and the more recent

S2050 released in November 2010, and based on the Fermi
architecture [23] (see Table I for full specifications).

Table I
CUDA AND HARDWARE FEATURES FOR THE TESLA C1060 GPU AND

THE TESLA M2050.

GPU element Feature Tesla C1060 Tesla M2050
Streaming Cores per SM 8 32
processors Number of SMs 30 14
(GPU Total SPs 240 448
cores) Clock frequency 1 296 MHz 1 147 MHz
Maximum Per multiprocessor 1 024 1 536
number of Per block 512 1 024
threads Per warp 32 32
SRAM 32-bit registers 16 K 32 K
memory Shared memory 16 KB 16/48 KB
available per L1 cache No 48/16 KB
multiprocessor (Shared + L1) 16 KB 64 KB

Size 4 GB 3 GB
Global Speed 2x800 MHz 2x1500 MHz
(video) Width 512 bits 384 bits
memory Bandwidth 102 GB/sc. 144 GB/sc.

Technology GDDR3 GDDR5

We first evaluate the existing, task-based approach, before
assessing the impact of including various modifications.

1) Evaluation of tour construction kernel: Table II sum-
marises the evaluation results for different GPU strategies
previously presented for the tour construction kernel. Our
baseline version (1) is the naı̈ve approach of task-based
parallelism (that is, the approach that has been used to
date). This redundantly calculates heuristic information. It
is first enhanced by (2) adding a kernel for avoiding re-
dundant calculations; i.e. the Choice kernel. The increase
in parallelism and the savings in terms of operations drive
this enhancement. A slight enhancement (around 10-20%) is
obtained by (3) generating random numbers with a device
function on the GPU, instead of using the NVIDIA CU-
RAND library. Although randomness could, in principle, be
compromised, this function is used by the sequential code.
The next big enhancement in performance is obtained by
(4) using the nearest-neighbour list (NNList). The NN List
limits the generation of many costly random numbers. For
a NN = 30, we report up to 6.71x speed up factor for
the biggest benchmark instance in the Table II (pr2392).
Allocating the tabu list in the shared memory (5) enhances
the performance for small-medium benchmark instances (up
to 1.7x speed up factor). However, this trend is limited by the
tabu list implementation being on a bitwise basis for biggest
benchmarks. To manage this design, many modulo and inte-
ger divisions are required, which produces an extra overhead.
Using the texture memory (6) for random numbers gains
a 25% of performance improvement. Finally, our proposal
of increasing the data-parallelism obtains the best speed up
factor for the att48 benchmark, being close to 4x between
8 and 6 kernel versions. However, it tends to decrease along
with the random number generation difference between both



Tour construction evaluation on the GPU	
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Code 
Version	


TSPLIB benchmark instance (problem size) on Tesla C1060 (msec.)	


att48	
 kroC100	
 a280	
 pcb442	
 d657	
 pr1002	
 pr2392	

Baseline version	
 13,14	
 56,89	
 497,93	
 1201,52	
 2770,32	
 6181	
 63357,7	


Choice Kernel	
 4,83	
 17,56	
 135,15	
 334,28	
 659,05	
 1912,59	
 18582,9	


Without	

CURAND	


4,50	
 15,78	
 119,65	
 296,31	
 630,01	
 1624,05	
 15514,9	


NNList	
 2,36	
 6,39	
 33,08	
 72,79	
 143,36	
 338,88	
 2312,98	


NNList	

+ Shared	


1,81	
 4,42	
 21,42	
 44,26	
 84,15	
 203,15	
 2450,52	


NNList	

+ Shared
+Texture	


1,35	
 3,51	
 16,97	
 38,39	
 75,07	
 178,30	
 2105,77	


Increasing Data 	

Parallelism	


0,36	
 0,93	
 13,89	
 37,18	
 125,17	
 419,53	
 5525,76	


Data parallelism 
+ Texture	


0,34	
 0,91	
 12,12	
 36,57	
 123,17	
 417,72	
 5461,06	


Total Speedup	

attained	


38,09x	
 62,83x	
 41,09x	
 32,86x	
 22,49x	
 14,8x	
 11,6x	




Tour construction evaluation: GPU Vs CPU	


JGPU 2011- José M. Cecilia	
 22	


0	


0,5	


1	


1,5	


2	


2,5	


3	


att48	
 kroC100	
 a280	
 pcb442	
 d657	
 pr1002	
 pr2392	


S
p

e
e

d
-u

p
 f

ac
to

r	


TSPLIB benchmark instance	


Speed-up factor NNList=30	


Tesla C1060 Vs Sequential	


Tesla C2050 Vs Sequential	


0	

5	


10	

15	

20	

25	

30	

35	


att48	
 kroC100	
 a280	
 pcb442	
 d657	
 pr1002	
 pr2392	


S
p

e
e

d
-u

p
 f

ac
o

r	


TSPLIB benchmark instance	


Speed-up factor fully probabilistic 	


Tesla C1060 Vs Sequential	


Tesla C2050 Vs Sequential	




Pheromone update evaluation on the GPU	
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Code Version	
 TSPLIB benchmark instance (problem size) on Tesla C1060 (msec.)	


att48	
 kroC100	
 a280	
 pcb442	
 d657	
 pr1002	

Atomic Ins. + 
Shared	


0,15	
 0,35	
 1,76	
 3,45	
 7,44	
 17,45	


Atomic Ins. 	
 0,16	
 0,36	
 1,99	
 3,74	
 7,74	
 18,23	


Instruction &	

Thread Reduction	


1,18	
 3,8	
 103,77	
 496,44	
 2304,54	
 12345,4	


Scatter to Gather 
+ Tiling 	


1,03	
 5,83	
 242,02	
 1489,88	
 7092,57	
 37499,2	


Scatter to Gather	
 2,01	
 11,3	
 489,91	
 3022,85	
 14460,4	
 200201	


Total Slowdowns	
 12,73x	
 31,42x	
 278,7x	
 875,29x	
 1944,23x	
 11471,59x	




Pheromone update evaluation: GPU Vs CPU	
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Agenda	


•  Motivation.	


•  Graphics Processing Units (GPUs).	


•  Ant Colony Optimization for TSP.	


•  Parallelization Strategies for ACO on GPUs. 	

•  Tour Construction. 	

•  Pheromone Update.	


•  Performance Evaluation. 	


•  Conclusions and Future Works (2 slides).	
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Conclusions and Future work 	


• Ant Colony Optimisation (ACO) is a meta-heuristic that has been 
successfully applied to many NP-complete problems. 	


•  It is intrinsically parallel, and thus well-suited to implementation 
on parallel architectures.  	


• Two main stages; Tour Construction and Pheromone Update.  	


•  Previous efforts on GPUs focused on Tour Construction, using task-
based parallelism. 	


• We demonstrated that this approach does not fit well on the 
GPU architecture, and provided an alternative approach based on  
data parallelism.  	
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Conclusions and Future work (II)	


• We discuss the implementation of the pheromone update stage on 
the GPU, to the best of our knowledge for the first time.	


•  Possible future directions will will include investigating the 
effectiveness of GPU-based ACO algorithms on other NP-
complete optimisation problems.	


• There are many other types of ACO algorithm still to explore, it 
is a potentially fruitful area of research. 	


• We hope that this paper stimulates further discussion and work.	
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Thanks for you attention	

Any Question?	


José M. Cecilia	

Phd Student at University of Murcia (Spain)	

email chema@ditec.um.es	

Tél : +34 968 83 57 83	

http://skywalker.inf.um.es/~chema	


José M. Cecilia, José M. García. University of Murcia (Spain)	

Andy Nisbet, Martyn Amos. Manchester Metropolitan University (UK)	


Manuel Ujaldón. University of Málaga (Spain)	


Paralelization Strategies for Ant 
Colony Optimisation on GPUs 	
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Appendix	


JGPU 2011- José M. Cecilia	
 29	


!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

)(*'" +$'!" ,-./('" 012%%$" 3+45'/" 03(!!$" 012((5/" )($*(" 03$/*$"

!
"#

$%&
'(
)*
(&+

,(
-)
$"
.)

/(

0-1234(4,/5+6#789(

67897.:+,";<=>?"
@+ABC2+A7)"+003D+1E"F"GH";I=>?""
J+4+C2+A7)"+003D+1E"F"GH";I=>?"
J+4+C2+A7)"+003D+1E"F"KCG";I=>?"



Appendix	


JGPU 2011- José M. Cecilia	
 30	



